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Abstract. A design of two-wheeled robot (TWR) trajectory tracking control system (TTCS)
using model reference adaptive control method is presented. The TTCS is to steer the TWR
track a desired trajectory. The tracking system dynamic is represented by a posture error
dynamic. The posture error dynamic is derived based on the robot kinematics. Assuming small
heading angles the posture error dynamic is approached by a a linear system. Model reference
adaptive control (MRAC) is applied in designing the TTCS based on the linear posture error
dynamic. The TTCS performace is evaluated through computer simulation. The simulation
results show that the designed controller is able to make the TWR track a desired trajectory.

1. Introduction
Mobile robots are robots that able to travel the whole body from one location to another
location. The mobile robot is also known as the vehicle. The mobile robots have locomotion
mechanisms to move in the environment. There are several types of locomotion mechanism
and including walk, jump, run, slide, skate, swim, fly, and roll [1]. Roll is the most popular
locomotion mechanisms due to simple and cheap in the implementation. The roll mechanism is
implemented using wheel and motor. Mobile robots using the roll locomotion mechanism are
known as the wheeled mobile robot.

Autonomous mobile robot is one of the most interesting research topics in the last three
decade. Several types of autonomous mobile robot have been developed, for examples:
unmanned aerial vehicle (UAV), unmanned ground vehicle, unmmaned water surface vehicle,
and unmmaned underwater vehicle. The autonomous mobile robots have ability to move on a
desired route without a human driver. Self driving car is an example of the autonomous mobile
robot that is currently developed in automotive sector. One of the most essential system in
autonomous mobile robot is trajectory tracking control system (TTCS). The TTCS is used to
steer the robot such that the robot move from departure point to destination point through a
desired trajectory. The TTCS is replacing the human driver in steering the mobile robots or
vehicles.

Initial work on developing autonomous mobile robot was presented in [2]. They developed
a four wheel mobile robot to be autonomous. The robot has four wheels where two wheels are
active wheels and the other wheels are passive wheels. Each active wheels are driven by an
electric motor. In developing a TTCS, the trajectory tracking system was formulated by the
robot posture error dynamics. Posture is a description of the position and orientation of the
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robot. Posture error is the different of the robot posture to the reference posture. The posture
error dynamics were derived based on the robot kinematics on a planar space. The derivation
resulted in a non-linear dynamics system. Lyapunov-based control method was applied in design
the TTCS. Experimental results showed that the designed TTCS was successfully steering the
robot move autonomously form indoor to outdoor. Since then the works in [2] was the followed by
several works on developing autonomous mobile robots. Difference kinds of control method have
been applied in designing the TTCS for various mobile robots, for examples: backstepping [3,4],
Lyapunov direct’s method in [5, 6], sliding mode control in [7], and adaptive control in [8].

A two-wheeled robot (TWR) is a ground mobile robot where the robot is equipped by two
wheels to support the robot body. Each wheels are driven by a high torque electric motor. The
use of two wheels makes the robot to be very easy in maneuver. This becomes the advantage
of the TWR where the maneuverability is higher than other ground mobile robots with more
wheels. However, the use of two wheels makes the TWR statically unstable. Active stabilization
is required in the TWR. Several works in TWR active stabilization have been presented [9–14].
The stabilized TWR can be operated for various purposes. One of them is applying the stabilized
TWR for autonomous mobile robot.

An autonomous TWR was introduced in [15]. The autonomous TWR was built by developing
two control systems. The first control system is an active stabilization to stabilize the TWR. The
second control system is trajectory tracking control system to steer the TWR move on a desired
track. Both control sytems were designed by applying optimal control method. Experimental
results show that the developed autonomous TWR was able to move autonomously on a desired
straight line path from indoor to outdoor. The results show that an autonomous TWR required
two control modes: TWR stabilization and trajectory tracking. Analysing the control design and
experimental results show that coupling between the both control modes can be neglected for
small angular velocity of heading motion. Since then research works on autonomous TWR
have been presented by applying different control design methods. Partial states feedback
linearization was applied in developing an autonomous TWR [16]. Adaptive control schemes
were also been applied, for example: adaptive backstepping control [17], adaptive sliding mode
control [18], and neural networks [19].

Investigation of the presented works on autonomous TWR show that most of the developed
tracking control system works to track a reference which is a set of linear and angular velocities
or certain desired trajectory but not arbitrary desired trajectory in earth-fixed coordinate
system [20]. In real world application, the desired trajectory should be arbitrary. Expressing
the trajectory in earth-fixed coordinate system will be an advantage in real world application.
It will make the trajectory tracking control system be ready integrated with the available earth-
fixed coordinate navigation system, for an example the global positioning system (GPS). A
work on developing a TWR tracking control system for an arbritrary trajectory in earth-fixed
coordinate system was presented in [20]. The tracking system dynamics were derived base on
the robot kinematics on a fixed-frame coordinate system and robot body coordinate system.
Model predictive control (MPC) was applied in design the trajectory tracking control system.
A work on developing trajectory tracking system of TWR based on a fixed-frame coordinate
system has been presented by applying optimal control method [21]. A simple design method
through pole domination approach was also applied in designing the trajectory tracking control
system based on the fixed-frame coordinate system.

This study presents a design of trajectory tracking control system based on fixed-frame
coordinate system using model reference adaptive control (MRAC). The MRAC is a part of
adaptive control method where a reference model is used as the reference for the closed loop
system. The control system will make the closed loop system behave as the reference model.
Presentation of this paper is organized as follows. The trajectory tracking system is derived
based on the robot kinematics as described in Section II. It will be end up with a linear states
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Figure 1. TWR coordinate systems.

equation of the posture error dynamics. Theory of MRAC applied in the trajectory tracking
control system design is described in Section III. A study case of applying the MRAC theory in
designing the trajectory tracking control of a TWR and the simulation results are presented in
Section IV. Finally, conclusions of the work and the future works are presented in Section V.

2. Kinematics of Two-Wheeled Mobile Robot on Planar Space
Figure 1 shows two units of two-wheels robot (TWR), TWR A and TWR B, on a planar space. A
fixed-frame coordinate system XIYI is used to represent position of the both TWRs. The TWR
A is located at (xa, ya) and the TWR B located at (xb, yb). Both TWRs move independently on
the space. The TWR A moves with linear velocity ua and angular velocity ra, while the TWR
B moves with linear velocity ub and angular velocity rb. Position is not enough to represent
the TWRs on the planar space. Both TWRs may have the same position in the planar space
but moving direction or orientation of both TWRs may be different. Moving direction of the
TWR is known as the TWR heading represented by heading angle, ψ. The TWR heading angle
is varying as the TWR makes angular motion. In oder to express the angular motion, new
coordinate systems call the robot body coordinate systems are defined at each TWRs. Origin
of the robot body coordinate system is located at the center mass of the robot. The robot
body coordinate system sticks on the robot body and moves following the robot movements.
The robot body coordinate system for TWR A is XAXA and for the TWR B is XBYB. The
x-axis of the robot body coordinate system points to the TWR forward movement and the y-
axis points perpendicularly to the left side of the x-axis. Deviation in orientation of the robot
body coordinate system to the fixed-frame coordinate system is representing the TWR heading
heading angle. It shown in the figure, the heading angle of TWR A is represented by ψA which
is the deviation angle of the XA axis to the XI axis, while heading angle of the TWR B, ψB, is
the deviation angle of the XB axis to the XI axis.
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The TWRs on the planar space need to be represented by position and orientation. Expression
of the position and orientation is known as the posture. The position describes location of the
origin of TWR body coordinate system with respect to the origin of inertial coordinate system.
Position of the TWR A and the TWR B are (xa, ya) and (xb, yb), respectively. The orientation
described the orientation different of the TWR body coordinate system with respect to the
inertial coordinate system. Orientations of the both TWRs are denoted by ψa for the TWR A
and ψb for the TWR B. Therefore, postures of the both TWR are given as follows:

ξa =

 xa
ya
ψa

 (1)

ξb =

 xb
yb
ψb

 (2)

where ξa and ξb are the postures of TWR A and TWR B, respectively.
The TWR A and TWR B move independently on the planar space. The TWR A moves

with linear velocity ua and angular velocity ra while the TWR A heading angle is ψa as shown
in the Figure 1. Both velocities are expressed in the TWR A body coordinate system. The
TWR A movement can be expressed in the fixed-frame coordinate system through the following
transformation:

ẋa = ua cosψa (3)

ẏa = ua sinψa (4)

ψ̇a = ra (5)

The TWR B with heading angle ψb moves with linear velocity ub and the angular velocity rb.
Expressing the TWR B movement in the fixed-frame coordinate system is done by the following
transformation:

ẋb = ub cosψb (6)

ẏb = ub sinψb (7)

ψ̇b = rb (8)

Assuming that the TWR B becomes a reference for the TWR A. The TWR A is desired to
track the TWR B moving trajectory. The tracking trajectory means that the TWR A posture
approaches the TWR B posture. Define a posture error as the deviation of the TWR A posture
to the TWR B posture given as follows:

ξe = ξb − ξa =

 xb − xa
yb − ya
ψb − ψa

 =

 xe
ye
ψe

 , (9)

where ξe is the posture error. For the trajectory tracking purpose, the TWR A needs to be
equipped by a trajectory tracking control system (TTCS). The TTCS is to steer the TWR
A for tracking the TWR B trajectory. Objective of the TTCS is to make the posture error
convergence to zero. State feedback control can be applied for converging the posture error.
Postures of TWR A and TWR B defined in (1) and (2) are expressed in an inertial coordinate
system. Therefore, the posture error (9) is in the inertial coordinate system. The posture error
is being a feedback in the TTCS. Due to TTCS is applied in the TWR A, it is necessary to
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express the posture error in the TWR A body coordinate system. Transforming the posture
error from the inertial coordinate system into the TWR A body coordinate system is given as
follows:

ξeA = RAIξe (10)

where ξe is the posture error in the inertial coordinate system, RAI is the transformation matrix
from the inertial coordinate system into the TWR A body coordinate system, and ξeA is the
posture error in the TWR A body coordinate system. Both RAI and ξeA are given as follows:

RAI =

 cosψa sinψa 0
− sinψa cosψa 0

0 0 1

 . (11)

ξeA =

 xeA
yeA
ψeA

 . (12)

Substituting (9), (12) and (11) into (10) results in: xeA
yeA
ψeA

 =

 cosψa sinψa 0
− sinψa cosψa 0

0 0 1

 xb − xa
yb − ya
ψb − ψa

 . (13)

Due to both TWRs are moving, the TWR postures are changing every time and therefore the
posture error. Dynamics of the posture error is obtained by calculate time derivative of the (10)
that results in:

ξ̇eA = ṘAIξe +RAI ξ̇e (14)

and the complete expression is [21]: ẋeA
ẏeA
ψ̇eA

 =

 rayeA + ub cosψeA − ua
−raxeA + ub sinψeA

rb − ra

 . (15)

The posture error dynamic is used as the mathematics model in design the TTCS. The posture
error dynamic is represented by a non-linear system in (15). Simplifying the TTCS design, the
posture error dynamics is approached by a linear system. Assuming the heading angle error to
be small such that ψe ≈ 0 such that

sinψe ≈ ψe (16)

cosψe ≈ 1 (17)

and therefore the (15) can be approximated by: ẋeA
ẏeA
ψ̇eA

 =

 rayeA + ub − ua
−raxeA + ubψeA

rb − ra

 . (18)

The (18) is a linear system and can be represented in a state space form as follows:

ẋ = Ax+Bu (19)
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Figure 2. Block diagram of model reference adaptive control (MRAC) [22].

with

x =

 xeA
yeA
ψeA

 , A =

 0 ra 0
−ra 0 ub

0 0 0


B =

 1 0
0 0
0 1

 , u =

[
u1
u2

]
=

[
ub − ua
rb − ra

]
.

where x is the system states, A is the system matrix, B is the input matrix, and u is the system
input.

3. Adaptive Control Design
Figure 2 shows block diagram of model reference adaptive control for trajectory tracking control
system. A comprehensive literature of adaptive control can be found in several text books, for
example [22, 23]. Formulating adaptive control design for the trajectory control is derived as
follows [23,24].

Recall the linear trajectory tracking system (19) and given as follows:

ẋ = Ax+Bu. (20)

Defined the following asymptotic linear system as a reference model for the (20):

ẋm = Amxm +Bmr. (21)

where the xm is the model reference system state, Am is the model reference system matrix, Bm

is the model reference input matrix, and r is the model reference input. Vectors and matrices in
the model reference have the same size with the respectively vectors and matrices in the linear
system (20). For the linear trajectory tracking system (20), define the control input u as follows:

u = −K1x+K2r. (22)
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where K1 and K2 are the control gain matrices, x is the system state of the linear trajectory
tracking system (20), and r is the model reference input in (21). Applying the control input
(22) into (20) results in a closed loop system as follows:

ẋ = (A−BK1)x+BK2r. (23)

For a simpler expression, defining Ac = A − BK1 and Bc = BK2 and substituting them into
(23) results in:

ẋ = Acx+Bcr. (24)

System response of the closed-loop system (24) is desired to approach system response of the
reference model (21). The following states error is defined to measure how the (24) system
response approaches the (21) system response:

e = x− xm. (25)

Time derivative of the state error results in the state error dynamics and given as follows:

ė = Acx−Amxm + (Bc −Bm) r. (26)

Mathematics manipulation of (26) by adding and subtracting Amx results in:

ė = Ame+ (Ac −Am)x+ (Bc −Bm) r. (27)

The expression of (27) can be simplified by defining the following two matrices: Ã = Ac − Am

and B̃ = Bc −Bm. Substituting the both matrices into (27) results in:

ė = Ame+ Ãx+ B̃r. (28)

Approaching of the (24) system response to the (21) system response of is indicated by the
state error converging to zero. Lyapunov stability theorem is applied to make the state error e
converges to zero [25]. Define the following function as a Lyapunov function candidate:

V = eTPe+ tr
(
ÃT Ã

)
+ tr

(
B̃T B̃

)
, (29)

where P is a positive definite matrix and tr is a mathematics operator for calculating trace of
a matrix. Time derivative of V is given by:

V̇ = ėTPe+ eTP ė+ 2tr
(
ÃT ˙̃A

)
+ 2tr

(
B̃T ˙̃B

)
(30)

and further calculation will result in:

V̇ = eT
(
AT

mP + PAm

)
e+ xT ÃTPe+ eTPÃx+ rT B̃TPe+ eTPB̃r+ 2tr

(
ÃT ˙̃A

)
+ 2tr

(
B̃T ˙̃B

)
.

(31)
Define the following positive definite matrix Q

Q = −(AT
mP + PAm). (32)

and substituting it into (31) results in:

V̇ = −eTQe+ 2xT ÃTPe+ 2rT B̃TPe+ 2tr
(
ÃT ˙̃A

)
+ 2tr

(
B̃T ˙̃B

)
. (33)
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The (32) is known as the algebraic Riccati equation. The positive definite matrix P is obtained
by solving the algebraic Riccati equation (32). In order to make the V̇ in (33) negative semi-
definiteness, the following condition needs to be satisfied:

tr
(
ÃT ˙̃A

)
= −xT ÃTPe (34)

and
tr
(
B̃T ˙̃B

)
= −rT B̃TPe. (35)

Analyzing size of the matrices and the vectors, it is known that both xT ÃTPe and rT B̃TPe are
scalar such that:

tr
(
xT ÃTPe

)
= tr

(
ÃTPexT

)
= xT ÃTPe (36)

tr
(
rT B̃TPe

)
= tr

(
B̃TPerT

)
= rT B̃TPe. (37)

Substituting (36) into (34) results in:

tr
(
ÃT ˙̃A

)
= −tr

(
ÃTPexT

)
(38)

and a further calculation will result in

K̇1 = (BTB)−1BTPexT . (39)

Through the same procedure, substituting (37) into (35) results in

tr
(
B̃T ˙̃B

)
= −tr

(
B̃TPerT

)
(40)

and a further calculation will end up with:

K̇2 = −(BTB)−1BTPerT . (41)

Both (39) and (41) are the key to make the V̇ negative semi-definite.Because K1, K2, and e are
bounded, using Barbalat’s lemma, the negative semi-definiteness of V̇ is sufficient to make (28)
asymptotic stable such that the error goes to zero [22].

The (39) and (41) are known as the mechanism for updating the control gain matrices.
Therefore the control gain matrices in the MRAC are given as follows:

K1(t) = K1(t0) +

∫ t

t0

K̇1dt (42)

K2(t) = K2(t0) +

∫ t

t0

K̇2dt (43)

where K1(t0) and K2(t0) are the initial control gain matrices.
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Figure 3. Trajectory the TWR A compared to the the reference trajectory (TWR B trajectory).

4. SIMULATION
A trajectory tracking control system (TTCS) of two-wheeled robot (TWR) is designed by
applying the model reference adaptive control (MRAC). The TTCS is applied in a TWR which
is called the TWR A. The TWR A is desired to track trajectory of another TWR that is called
the TWR B. The TWR B trajectory is known as the reference trajectory for the TWR A.

Performance of the TTCS is evaluated through a computer simulation. Scenario of the
simulation is described as follows. TWR A is initially at an idle position located at (0.2, 3) in
a fixed-frame coordinate system with heading angle 90◦. Both linear and angular velocities of
the TWR A are zero. TWR B is initially located at (0, 2) in the fixed-frame coordinate system
and the heading angle is 0◦. The TWR B moves with linear velocity 2 m/s and angular velocity
0.5 rad/s such that the TWR B will move on an ellipsoid trajectory. The TWR A is desired to
track the TWR B trajectory.

MRAC is applied to design a trajectory tracking control system (TTCS) for the TWR A.
An asymptotically stable linear system with the following parameter is defined as the model
reference (21) for the MRAC.

Am =

 −10 0 0
0 −2 0
0 0 −50

 , Bm =

 1 0 0
0 1 0
0 0 1


Control design parameter of the MRAC is represented by the matrix Q in (32). The value of
matrix Q is selected as follows:

Q =

 100 0 0
0 10 0
0 0 10

 (44)
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Figure 4. Posture of the TWR A compared to the the reference posture (TWR B posture).

Initial value of control gain matrices in (22) are:

K1 =

 1 0 0
0 1 0
0 0 1

 and K2 =

 1 0 0
0 1 0
0 0 1

 . (45)

The designed TTCS is applied in the TWR A and the trajectory tracking is simulated.
Simulation results are shown in the following figures. Trajectories of the TWR A and the TWR
B are shown in Figure 3. Both TWRs are initially located in difference location. Figure 4 shows
a comparison of the TWR A posture and the TWR B posture. The simulation results show that
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the designed TTCS makes the TWR A posture approches the TWR B posture as the reference
posture. The simulation results show that the TWR B moves from the initial position and make
an ellipsoid trajectory. The designed TTCS is able to make the TWR A track the TWR B
trajectory.

5. CONCLUSION
A design of trajectory tracking control system (TTCS) of two-wheeled robot (TWR) has been
presented. The TTCS was designed by applying model reference adaptive control (MRAC)
method. Simulation results show that the designed TTCS was able to make the TWR A track
the reference trajectory which is the TWR B trajectory. Designing TTCS using MRAC method
was done by defining a model reference and a positive definite matrix Q. An asymptotically
stable linear system was chosen as the model reference. The positive definite matrix Q was
representing the control design parameter. The control performance is depend on the selected
model reference and the matrix Q.
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