
PROCEEDINGS

SEATUC2018
SOUTH EAST ASIAN TECHNICAL UNIVERSITY CONSORTIUM

In Conjuction with

2018
“the 8th International Annual Engineering Seminar”

IEEE
Advancing Technology

for Humanity
2018

“the 8th International Annual Engineering Seminar”

In Conjuction with

al ic Un nh ic vee rT sn ita yi  s C

A o t n

s sa u

E r tih ut muoS

The 12th SEATUC Symposium 
Engineering Education and Research for 
Sustainable Development

seatuc2018@ugm.ac.id

http://seatuc2018.ugm.idW

OS01. Green Energy System
OS02. Sustainable Building and Infrastructure
OS03. Information Technology, Smart System and Automation
OS04. Hazard and Risk Management
OS05. Earth Science and Geomatics
OS06. Green and Smart Transportation System
OS07. Green Advanced Materials
OS08. Sustainable Industrial Process and Manufacturing System
OS09. Sustainable Environment
OS10. Sustainable Urban and Regional Planning & Development
OS11. Biotechnology and Life Science
OS12. Engineering Education
OS13. IEEE

March 
Graduate School Building UGM

(Gedung Pascasarjana)
Yogyakarta, Indonesia

12 - 13, 2018

ISBN: 978-1-5386-5092-9 (IEEE)
ISSN: 2186-7631 (SEATUC)

72 TAHUN HARI PENDIDIKAN TINGGI TEKNIK
Pendidikan Keteknikan untuk Pembangunan Berkelanjutan



Adaptive Control System Design for Two-Wheeled
Robot Stabilization

Nur Uddin
Department of Informatics

Universitas Pembangunan Jaya

Tangerang Selatan, Banten, Indonesia 15413

Email: nur.uddin@upj.ac.id

Abstract—A design of two-wheeled robot (TWR) stabilization
system using model reference adaptive control (MRAC) method
is presented. A TWR is a statically-unstable non-linear system
that requires an active stabilization system to operate. The active
stabilization system is a state feedback control system. MRAC is
applied to design the TWR active stabilization system. MRAC is
an adaptive control scheme which has an adaptation mechanism
to make a plant as a control object to behave following a
reference model. Performance of the designed stabilization system
is demonstrated through computer simulation. The simulation
results show that the designed system is able to stabilize the
TWR and even when some disturbances are presented .

Keywords: Two-wheeled robot, self-balancing robot, adap-
tive control, model reference adaptive control, disturbance
rejection.

I. INTRODUCTION

A two-wheeled robot (TWR) is one of the favourite plants
in control system study. TWR price is quite cheap but provides
quite challenge problems. One of them is stability problem.
The TWR is a mobile robot is basically constructed by a robot
body that is supported by two wheels. Each wheels is driven by
a DC motor such that the TWR is in the class of differential-
drive mobile robot. Differential-drive mobile robots have high
maneuver capability and moreover, the TWR is only supported
by two wheels that increase the maneuver capability. The TWR
is promising a high maneuver capability but the two-wheel
support makes the TWR is not able to stand by itself. The
TWR is a statically unstable system.

An active stabilization system is required for the TWR
to stand such that it can be operated and applied for many
purposes. The active stabilization system is a states feedback
control system. Structure of a control system consists of a
plant, a controller, actuators, and sensors. The plant is an object
to be controlled, for this case is the TWR. The controller is
to determine a control command to stabilize the TWR. The
control command is executed by the actuators. The DC motors
driving the wheels are applied as the actuators. The actuators
execute the control command by generating a control torque
to stabilize the robot. The generated control torque has to
be exactly in the same amount as required. Incorrect control
torque will not able to stabilize the robot. The controller
determines the control command based on a control law and
states feedback. The states feedback is provided by sensors
which measure the robot states. An inertial measurement unit
(IMU) which consists of rate gyros and accelerometers is
commonly applied as sensor in TWR to measure the robot

attitude. Since the sensor and actuator are already provided,
the remaining part to build a TWR stabilization system is the
controller. A controller has a control law that is an algorithm
to calculate the control command. The control law is obtained
through a control design process.

A control law can be designed using the available control
theories, for example model-based control methods. Control
design using model-based control method requires a plant
dynamics model. The plant dynamics model is mathematics
equations representing the plant dynamics. The model can be
obtained through system modeling and system identification.
Unfortunately, system identification of an unstable system is
quite difficult. System modeling is carried out by applying
relevant physical laws and using some assumptions for sim-
plification. TWR system modeling by applying the Newton’s
laws of motion has been presented in [1], [2], while TWR
system modeling by using Euler-Lagrange method has been
presented in [3], [4]. Both system modeling approaches of the
TWR result in a non-linear mathematics equations which show
that the TWR is a non-linear dynamics system.

Non-linearity in TWR dynamics provides a challenge work
in control system design for the TWR stabilization. Control
design of a non-linear system is more difficult than the linear
system. Simplify the problem in control design of a non-linear
system can be done by is linearization [5]. Linearization is a
method to approach a non-linear system by a linear system.
By this approach, linear control system design can be done for
the linearized system. A design of TWR stabilization system
using linear quadratic requlator (LQR) has been presented
in [6]. Comparison of TWR stabilization systems designed
using LQR and PID control has been presented in [7]. The
comparison result shows that both designed systems are able
to stabilize the TWR but system designed using LQR has better
performance than the system designed using PID control.
LQR is a full states feedback control such that measurement
of all states is required. For a case where some of the
states are unmeasured, observer can be applied to estimate
the unmeasured states. A study on TWR stabilization using
LQR and utilizing estimated states as the states feedback
has been presented in [8]. The presented studies show that a
controller of TWR stabilization system can designed in straight
forward manner by applying a linear control method for the
linearized TWR system. Linerization provides a simple way to
design the controller of a non-linear system including TWR.
However, the resulted TWR stabilization system works only
for a limited region around an equilibrium point that is used



as the linearization base. Therefore, the TWR is stabilized
in certain operating area but not the whole operating area.
In order to stabilize the whole TWR operating area, the
TWR stabilization system has to be designed using a non-
linear control method. Control design using non-linear control
method can not be done in straight forward manner as using
linear control method. This makes control design using non-
linear control method is more difficult. Several studies on
applying non-linear control methods for TWR stabilization
have been presented and the results show that the whole TWR
operating area are stabilized [2], [9]–[11].

Stabilizing the whole operating area may require powerful
motors that are quite costly. In practical application, it may
not need to stabilize the whole operating but enough to
stabilize in a certain region. Another important thing to be
considered in design a TWR stabilization system is capability
to withstand disturbance. Disturbance is always present in
real world. Adaptive control system promises an adaptation
capability to maintain control system performance in any
situations, including when disturbances are present [12]. The
adaptation provides a mechanism to adjust control gains such
that the control system performance is maintained.

This paper presents a design of TWR stabilization system
using adaptive control method, particularly model reference
adaptive control (MRAC). The resulted TWR stabilization
system is expected to maintain the TWR stability even though
disturbances are present. Presentation of the paper is organized
as follows. Introduction is given in Section I. Section II
describes a TWR model. It will be shown that the TWR is a
non-linear dynamics system. Section III describes system states
representation of the TWR and linearization of the system
states. Design of TWR stabilization system using adaptive
control method is presented in Section IV. Performance of
the designed system is then evaluated through computer sim-
ulations and is presented in Section V. Finally, Section VI
concludes the work.

II. MODELING OF TWO WHEELS ROBOT

A two-wheels robot (TWR) is basically constructed by a
robot body and two-wheels. The wheels are to support the
robot body. Each wheels is driven by a DC motor. Model of
the TWR is shown in Figure 1a. The robot body is represented
by a linkage where the center of mass is assumed to be located
at the middle of the linkage. This study is only concerned in
longitudinal dynamics of TWR and assumes that both wheels
move in the same motion, such that both wheels move in the
same velocity and direction. Therefore, the TWR motion is
limited in two degree of freedom (2 DOF), i.e.: one translation
and one rotation (pitch motion).

Assume that a TWR is initially at standing position. Pre-
senting a disturbance to the TWR may make the TWR to pitch.
Attitude of the TWR is denoted by a pitch angle, θ, which is
angle of the robot body with respect to vertical axis. At the
pitch position with pitch angle θ as shown in Figure 1a, weight
of the robot body gives a moment and makes the robot to fall
down. It is the reason why the robot is statically unstable.
In order to keep the robot stable which is turning back the
robot to the initial attitude, a torque is required to counter the
disturbance and the moment due to the weight. This required
torque is then called as the control torque.
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Fig. 1: (a) Two-wheeled robot (TWR) model. (b) Free-body
diagram of the TWR model.

While the DC motors are active, they generate torque to
rotate the wheels. Friction of the wheel and the floor results
in reaction torque to the body. Figure 1b shows free body
diagram of the robot. There are two moments working on the
robot body, i.e.: moment due to the body weight and moment
due to the reaction torque. The reaction torque can be utilized
as a control torque to stabilize the robot. Therefore, the DC
motors have two functions: driving the wheels and actuator to
stabilize the robot.

In order to derive the TWR dynamic, consider Figure 1b
and use the wheel axis as the base point to evaluate the working
torques on the TWR body. Applying the Newton’s second law
results in the following dynamic equations:

ΣM = Iθ̈ (1)

τ − 1

2
mgl sin θ = Iθ̈ (2)

where M is the working moment on the TWR, I is the TWR-
body inertia, θ is the TWR pitch angle, m is the TWR-body
mass, g is the gravity acceleration, l is the TWR-body length,
θ̈ is the pitch angular acceleration, and τ is the control torque
to stabilize the TWR. By defining Ir = 1

2mgl the (2) can be
expressed as:

Iθ̈ + Ir sin θ = τ. (3)

III. SYSTEM STATES REPRESENTATION AND

LINEARIZATION

Define the following system states

x1 = θ

x2 = θ̇
(4)

and substituting (4) into (3) such that the TWR dynamic
equations can be expressed in a system states equation as
follows:

ẋ1 = x2

ẋ2 = − Ir
I sinx1 +

1
I τ.

(5)
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Fig. 2: Block diagram of model reference adaptive control
(MRAC) [12].

Simplify (5) by defining constants k1 = Ir
I and k2 = 1

I and
substituting into (5) such that results in:

ẋ1 = x2

ẋ2 = −k1 sinx1 + k2τ.
(6)

Equation (6) is the states equation of TWR dynamics system.
It is shown that the TWR is a non-linear dynamics system.
Linearization to the system is done to simplify in control
design process. The system is linearized around the origin
(θ = 0, θ̇ = 0) and results in:

ẋ = Ax+Bu, (7)

where x =

[
x1

x2

]
, A =

[
0 1
k1 0

]
, B =

[
0
k2

]
, and u = τ .

IV. ADAPTIVE CONTROL DESIGN

Adaptive control theory discussed in this section is adopted
from [12], [13] and described as follows. For a system:

ẋ = Ax+Bu (8)

defined a model reference:

ẋm = Amxm +Bmr. (9)

Define a control input

u = −K1x+K2r. (10)

and substituting (10) into (8) results in:

ẋ = (A−BK1)x+BK2r. (11)

Define Ac = A−BK1 and Bc = BK2 such that (11) can be
expressed by:

ẋ = Acx+Bcr. (12)

Goal of this control design is to make the closed-loop system
(12) to behave following the reference model (9). In order to
achieve the goal, define states error between the closed-loop
system and the reference model as follows:

e = x− xm (13)

and derivating the states error with respect to time results in:

ė = Acx−Amxm + (Bc −Bm) r. (14)

Adding and subtracting Amx into (14) result in:

ė = Ame+ (Ac −Am)x+ (Bc −Bm) r. (15)

Define Ã = Ac − Am and B̃ = Bc − Bm such that (15) can
be expressed by:

ė = Ame+ Ãx+ B̃r. (16)

In order to make e converge to zero for t → ∞, define a
Lyapunov function:

V = eTPe+ tr
(
ÃT Ã

)
+ tr

(
B̃T B̃

)
, (17)

where operator tr is trace of matrix. Derivating the Lyapunov
function with respect to time results in:

V̇ = ėTPe+ eTP ė+ 2tr
(
ÃT ˙̃A

)
+ 2tr

(
B̃T ˙̃B

)

=
[
Ame+ Ãx+ B̃r

]T
Pe+ eTP

[
Ame+ Ãx+ B̃r

]

+2tr
(
ÃT ˙̃A

)
+ 2tr

(
B̃T ˙̃B

)

=
[
eTAT

m + xT ÃT + rT B̃T
]
Pe+ 2tr

(
ÃT ˙̃A

)

+eTP
[
Ame+ Ãx+ B̃r

]
+ 2tr

(
B̃T ˙̃B

)
= eT

(
AT

mP + PAm

)
e+ xT ÃTPe+ eTPÃx

+rT B̃TPe+ eTPB̃r

+2tr
(
ÃT ˙̃A

)
+ 2tr

(
B̃T ˙̃B

)
(18)

Using algebraic Riccati equation, it can be found a matrix Q
where:

AT
mP + PAm = −Q (19)

such that (18) becomes:

V̇ = −eTQe+ 2xT ÃTPe+ 2rT B̃TPe+ 2tr
(
ÃT ˙̃A

)

+2tr
(
B̃T ˙̃B

)
. (20)

Negative semidefiniteness of V̇ can be achieved by the follow-
ing condition:

tr
(
ÃT ˙̃A

)
= −xT ÃTPe (21)

and

tr
(
B̃T ˙̃B

)
= −rT B̃TPe. (22)

Since both xT ÃTPe and rT B̃TPe are scalar, we can define:

tr
(
xT ÃTPe

)
= tr

(
ÃTPexT

)
= xT ÃTPe (23)

tr
(
rT B̃TPe

)
= tr

(
B̃TPerT

)
= rT B̃TPe. (24)

Therefore, the negative semidefiniteness of V̇ can be achieved
by the following rules:

K̇1 = (BTB)−1BTPexT (25)

K̇2 = −(BTB)−1BTPerT (26)

Note that V̇ is now negative definite. Because K1, K2, and
e are bounded, using Barbalat’s lemma, it is shown that the
error goes to zero [12].



TABLE I: SIMULATION PARAMETERS

Parameter Symbol Value Unit

Mass of the rod mr 0.1 kg
Length of rod l 0.2 m

Inertia of the rod Ir 13×10−4 kg.m2

V. SIMULATION

Performance of the designed TWR stabilization system
using adaptive control method is evaluated through computer
simulations. Simulations are purposed to show whether that
the designed system is able to stabilize the TWR when
disturbances are present. Parameters of the TWR used in the
simulation are given in Table I. It is assumed that all system
states are measured and measurement noises are neglected. For
the simulation, define a reference model as follows

Am =

[
0 1

−100 −15

]
, Bm =

[
0
1

]

and matrix Q in (19) as the adaptive control parameter is
selected as follows

Q =

[
104 0
0 1

]
.

Two simulation scenarios are presented as follows. In first
simulation, the TWR is passing a smooth road profile. The
TWR position is initially at θ = 0◦. At t = 0.5 seconds, the
robot is disturbed by an impulse torque 0.5 Nm such that the
TWR pitches with pitch angle θ. An inertial measurement unit
(IMU) is commonly installed on a TWR as a sensor to measure
angular position and angular rate. In this case, the sensor is
modelled by unity gain. The sensor gives information about
the pitch angle and pitch angular rate as states feedback to the
controller. The controller use the states feedback to calculate a
control torque that is required to return the TWR to the initial
position, θ = 0◦. Figure 3 shows the simulation results. The
disturbance makes the robot to pitch about 20◦. The result
shows that the designed TWR stabilization system is able
to return the TWR to the initial position θ = 0◦ such that
the TWR is asymptotically stabilized. The required time for
stabilization is about 1.2 seconds. The required stabilization
time can be modified by adjusting reference model parameter
(Am and Bm) and the adaptation parameter (Q).

In second simulation, the TWR is passing a rough road
profile. The simulation scenario is done by modifying the
first simulation scenario by adding random torque due to the
rough road profile. The random torque has amplitude 0.1 Nm
and frequency 1 Hertz. Figure 4 shows the simulation results.
The designed TWR stabilization is able to keep the TWR to
be stable such that the TWR is not falling down. However,
the TWR pitch angle is varying in the range of about ±5◦
due to the random torque disturbance is presented during the
simulation. Figure 5 shows the TWR system trajectory. It is
shown clearly that the TWR system is stable as shown by the
bounded system trajectory.
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Fig. 3: The TWR response when the robot is disturbed by
impulse torque 0.5 Nm.

VI. CONCLUSION

A design of two-wheeled robot (TWR) stabilization system
using model reference adaptive control (MRAC) method has
been presented. The TWR stabilization system was designed
based on a linearized system. The designed system has adap-
tation capability to make the closed loop system to behave fol-
lowing a reference model. Through the adaptation capability,
the closed loop system shows capability of disturbance rejec-
tion, where the closed loop system attempts to maintains the
stabilization performance even though a continues disturbance
is present. The designed TWR stabilization has both capability
of TWR stabilization and disturbance rejection. The designed
TWR stabilization is very prospective for practical application.
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Fig. 4: The TWR response when the robot is disturbed by
impulse torque 0.5 Nm and random torque with amplitude
0.1 Nm and frequency 1 Hertz.

VII. FUTURE WORKS

A TWR is under construction and the designed stabilization
system is going to be implemented and tested in real-time.
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